Machine Learning Pipelines on AWS
From £3,735 + VAT
Book online today or, if you need help choosing the right course or would like to discuss business discounts, call us on 0113 220 7150.
Sorry, there are currently no dates available to book. Submit an enquiry to hear from one of our team about when dates might become available.
Overview
This course explores how to use the machine learning (ML) pipeline to solve a real business problem in a project-based learning environment. Students will learn about each phase of the pipeline from instructor presentations and demonstrations and then apply that knowledge to complete a project solving one of three business problems: fraud detection, recommendation engines, or flight delays. By the end of the course, students will have successfully built, trained, evaluated, tuned, and deployed an ML model using Amazon SageMaker that solves their selected business problem.
Intended Audience
This course is intended for:
- Developers
- Solutions Architects
- Data Engineers
- Anyone with little to no experience with ML and wants to learn about the ML pipeline using Amazon SageMaker
Delivery Method
This course is delivered through a mix of:
- Instructor-led training
- Hands-on labs
- Demonstrations
- Group exercises
Prerequisites
We recommend that attendees of this course have the following prerequisites:
- Basic knowledge of Python programming language
- Basic understanding of AWS Cloud infrastructure (Amazon S3 and Amazon CloudWatch)
- Basic experience working in a Jupyter notebook environment
Delegates will learn how to
In this course, you will learn how to:
- Select and justify the appropriate ML approach for a given business problem
- Use the ML pipeline to solve a specific business problem
- Train, evaluate, deploy, and tune an ML model in Amazon SageMaker
- Describe some of the best practices for designing scalable, cost-optimized, and secure ML pipelines in AWS
- Apply machine learning to a real-life business problem after the course is complete
Outline
Module 1: Introduction to Machine Learning and the ML Pipeline
- Overview of machine learning, including use cases, types of machine learning, and key concepts
- Overview of the ML pipeline
- Introduction to course projects and approach
Module 2: Introduction to Amazon SageMaker
- Introduction to Amazon SageMaker
- Demo: Amazon SageMaker and Jupyter notebooks
- Lab 1: Introduction to Amazon SageMaker
Module 3: Problem Formulation
- Overview of problem formulation and deciding if ML is the right solution
- Converting a business problem into an ML problem
- Demo: Amazon SageMaker Ground Truth
- Hands-on: Amazon SageMaker Ground Truth
- Problem Formulation Exercise and Review
- Project work for Problem Formulation
Day Two
Recap and Checkpoint #1
Module 4: Preprocessing
- Overview of data collection and integration, and techniques for data preprocessing and visualization
- Lab 2: Data Preprocessing (including project work)
Module 5: Model Training
- Choosing the right algorithm
- Formatting and splitting your data for training
- Loss functions and gradient descent for improving your model
- Demo: Create a training job in Amazon SageMaker
Day Three
Recap and Checkpoint #2
Module 6: Model Training
- How to evaluate classification models
- How to evaluate regression models
- Practice model training and evaluation
- Train and evaluate project models
- Lab 3: Model Training and Evaluation (including project work)
- Project Share-Out 1
Module 7: Feature Engineering and Model Tuning
- Feature extraction, selection, creation, and transformation
- Hyperparameter tuning
- Demo: SageMaker hyperparameter optimization
Day Four
Lab 4: Feature Engineering (including project work)
Recap and Checkpoint #3
Module 8: Module Deployment
- How to deploy, inference, and monitor your model on Amazon SageMaker
- Deploying ML at the edge
Module 9: Course Wrap-Up
- Project Share-Out 2
- Post-Assessment
- Wrap-up
Why choose QA
- Award-winning training, top NPS scores
- Nearly 300,000 learners in 2020
- Our training experts are industry leaders
- Read more about QA
Special Notices
Labs - Please note: The labs for your AWS course will be delivered through AWS Builder labs. In order to access these labs you will need to have an Amazon BuilderID. You can set up your new Amazon account here. Please ensure that you have set up this Amazon BuilderID in advance of attending your class.
Courseware – Please note: In order to access your digital course materials you are required to set up a Gilmore account in advance of attending your course. To do this please follow this link.
Please also be aware that in order to access your materials and Labs it is important that your device and network should not restrict access to AWS or Vitalsource content. For that reason, AWS recommend NOT using a Corporate laptop with any security restrictions in place or the use of a VPN.
AWS learning paths
AI Engineer for AWS
Data careers with AWS
Frequently asked questions
How can I create an account on myQA.com?
There are a number of ways to create an account. If you are a self-funder, simply select the "Create account" option on the login page.
If you have been booked onto a course by your company, you will receive a confirmation email. From this email, select "Sign into myQA" and you will be taken to the "Create account" page. Complete all of the details and select "Create account".
If you have the booking number you can also go here and select the "I have a booking number" option. Enter the booking reference and your surname. If the details match, you will be taken to the "Create account" page from where you can enter your details and confirm your account.
Find more answers to frequently asked questions in our FAQs: Bookings & Cancellations page.
How do QA’s virtual classroom courses work?
Our virtual classroom courses allow you to access award-winning classroom training, without leaving your home or office. Our learning professionals are specially trained on how to interact with remote attendees and our remote labs ensure all participants can take part in hands-on exercises wherever they are.
We use the WebEx video conferencing platform by Cisco. Before you book, check that you meet the WebEx system requirements and run a test meeting (more details in the link below) to ensure the software is compatible with your firewall settings. If it doesn’t work, try adjusting your settings or contact your IT department about permitting the website.
How do QA’s online courses work?
QA online courses, also commonly known as distance learning courses or elearning courses, take the form of interactive software designed for individual learning, but you will also have access to full support from our subject-matter experts for the duration of your course. When you book a QA online learning course you will receive immediate access to it through our e-learning platform and you can start to learn straight away, from any compatible device. Access to the online learning platform is valid for one year from the booking date.
All courses are built around case studies and presented in an engaging format, which includes storytelling elements, video, audio and humour. Every case study is supported by sample documents and a collection of Knowledge Nuggets that provide more in-depth detail on the wider processes.
When will I receive my joining instructions?
Joining instructions for QA courses are sent two weeks prior to the course start date, or immediately if the booking is confirmed within this timeframe. For course bookings made via QA but delivered by a third-party supplier, joining instructions are sent to attendees prior to the training course, but timescales vary depending on each supplier’s terms. Read more FAQs.
When will I receive my certificate?
Certificates of Achievement are issued at the end the course, either as a hard copy or via email. Read more here.